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We study numerically the Riemann problem for a 2 x 2 system of con- 
servation laws with a cubic flux function, a particular case of the class 
of models introduced by Keyfitz and Kranzer. The system is not strictly 
hyperbolic, and the classical Lax theory for hyperbolic systems is not 
directly applicable. Correspondingly, some numerical schemes which 
are accurate for strictly hyperbolic systems are not well behaved for this 
example. When they do work, different schemes yield markedly dif- 
ferent results for certain data. We explain this effect by observing that, 
near these data, viscous regularization is non-uniform as the viscosity 
tends to zero. This fact does not contradict the well-posedness of the 
hyperbolic model; it does imply that precise control of the viscosity 
introduced into a computational method is crucial for generating the 
correct numerical solutions. We examine all of these issues and com- 
ment on their implications for similar systems which arise in continuum 
mechanics. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Consider the system of hyperbolic conservation laws 
given by 

u, + (I UI 2 U), = 0, (1.1) 

where U = (u, u) E [w2. This system is not strictly hyperbolic, 
since the two eigenvalues of the Jacobian D( 1 UI 2 U), viz. 
Iz’( U) = 3 ) U12 and A”(U) = ) U12, are equal at the origin 
U = 0. Away from U = 0, the fast radial mode (corre- 
sponding to A’, eigenvector (u, u)) is genuinely non-linear 
in the sense of Lax [30], while the slow angular mode 
(corresponding to A”, eigenvector (0, -24)) is linearly 
degenerate. 

* Supported by the Air Force Oflice of Scientific Research under Grant 
AFOSR 900076. 

The present article is the first in a planned series of three 
papers [ 17, IS] in which we study the system (1.1) numer- 
ically. In this Part I we restrict attention to the Riemann 
problem. The Riemann problem consists of finding a (weak) 
solution of (1.1) which assumes the initial values 

U(x, 0) = i?(x) = 
{ 

ut, x<o 
u (1.2) 

rl x > 0. 

For purposes of our discussion, it is helpful to consider 
polar coordinates in phase space, i.e., r: [w2 -+ [0, co), 
8: Iw2 -+ [w mod 27~ defined by U = r(U)(cos(O(U)), 
sin(8( U)). An intuitively plausible way to assign a centered, 
piecewise continuous solution to (1.1 )-( 1.2) is to combine 
(i) a contact discontinuity in the slow family, which rotates 
the state variables from U, to an intermediate state U,, 
where r( U,) = r( U,), with (ii) a shock or rarefaction wave 
from U, to U,, along which 8 = const (see [ 121). 

For comparison, consider also the reduced system 
obtained by setting u = 0 in ( 1.1): 

24, + ( u3).x = 0. (1.3) 

The Riemann problem for this scalar equation may be 
solved by following the construction of Liu [32] and 
Wendroff [45] for non-convex flux functions. In addition to 
the “classical” solutions to (1.2) consisting of either a single 
shock or rarefaction wave, the non-convexity of (1.2) intro- 
duces composite wave solutions, consisting of a shock 
juxtaposed with a rarefaction. Of course, completing such a 
scalar solution with a u-component which is identically 
equal to zero gives solutions to the full problem for special, 
co-linear data. 
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These two constructions suggest a non-uniqueness of 
solutions and/or a non-continuous dependence of the 
solutions on initial data. In order to illustrate this difficulty, 
consider the Riemann problem ( 1.1 )-( 1.2) with data 

U,=(l,O), U, = (cos ii, sin 6) (1.4) 

for values of 6 near rc. If 6 = n exactly, the two constructions 
yield two different solutions. One solution consists of a 
contact discontinuity joining U, to U,; the other solution is 
composed of a shock joining UI to a middle state U,. = 
( - 4, 0) and an adjacent rarefaction wave joining U,, to U,. 
In both solutions, u E 0. The composite wave solution, being 
the solution of a restricted problem, might seem more 
natural. On the other hand, the contact wave solution may 
readily be extended to data (1.4) with 6 # rc. The continuity 
of the contact wave solution operator, as data moves off of 
the line u = 0, seems a desirable property. Indeed, as long as 
6 is different from n, there is no centered, piecewise smooth 
solution of (1.1 )-( 1.4) which would, in the limit 6 + ‘IL, 
approach the composite wave solution. Conversely, any 
contact discontinuity is the limit of smooth, quasistationary 
solutions of ( 1.1). 

Our present study aims at describing how the system (1.1) 
can be treated numerically, in a consistent and justifiable 
way. Because the system is strictly hyperbolic except at one 
point, one might hope that standard numerical methods will 
work adequately in local regions which do not contain the 
umbilic point; it is less clear how such methods might work 
near the umbilic point, or for large data “surrounding” it. 
Indeed, we will show that different numerical methods yield 
markedly different results for certain special data. This 
differing of computational results is related to the potential 
multiciplicity of solutions discussed in the previous 
paragraph and is intimately connected with a non- 
uniformity of the classical vanishing viscosity approach (cf. 
Freistuhler [ 13, 14, 161 and Liu [35]). Regarding solutions 
of the parabolic regularization U, + (/ Ul 2 U), = EU,, of 
(1 .l ), the following statement holds for certain data: For each 
fixed positive value of the viscosity coefficient E, the solution 
is stable against perturbations of the initial data, but the 
region of stability shrinks to zero as e L 0. This result 
suggests that the classical tool of artificial viscosity should 
not be employed on rotationally degenerate systems 
without exercising great caution. Regarding numerical 
methods, we emphasize that precise control over the size of 
any numerical viscosity is indispensable in these special 
cases. 

A major motivation to study model (1.1) is its role as a 
prototype of larger systems which arise in continuum 
mechanics (see [ 121). There is a precise isomorphism 
between the wave pattern of (1.1) and (the transverse) part 
of the wave pattern of any generic rotationally degenerate 
system of hyperbolic conservation laws [ 11, 121. Systems 

which describe plane wave propagation of isotropic, multi- 
dimensional systems are rotationally degenerate [ 111. 
Recently, Brio and Hunter [4] have derived ( 1.1) from 
larger continuum mechanics models by formal asymptotic 
techniques. 

Two particular areas of continuum mechanics to which 
these comments apply are magnetohydrodynamics and 
isotropic elasticity. In the case of magnetohydrodynamics, 
( 1.1) was derived long ago by Cohen and Kulsrud [ 71, who 
used it to explain specific features of the solar wind. The 
Riemann problem for the full MHD system was treated 
analytically by Gogosov [23], and computational results 
have been presented by Brio and Wu [S] and Wu [46]. In 
related work, recent computations for (1.1) were presented 
in [27]. Keylitz and Kranzer [28] and Shearer [42] 
studied the Riemann problem for a thin elastic string, and 
Fehribach and Shearer [lo], Gilquin and Serre [19], and 
Tait [43] have performed computations on this problem. 
The paper [ 111 addresses both MHD and elasticity. The 
systematic numerical study of (1.1) which we present here 
continues the analytic work of [ 11, 12, 141. 

We conclude this introduction by outlining the format for 
the rest of this paper. Section 2 describes the computational 
methods employed in this study, and Section 3 presents 
numerical results. Section 4 interprets these results and 
returns to our discussion of how (1.1) relates to more 
realistic continuum mechanics models. 

2. COMPUTATIONAL METHODS 

In this section, we discuss issues pertinent to the numeri- 
cal computation of solutions to (1.1). After reviewing some 
fundamental ideas and results in the theory of (strictly) 
hyperbolic conservation laws in Sub-section 2.1, in 
Sub-sections 2.2 through 2.4 we give a brief introduction to 
numerical methods for such systems. We address the issue of 
non-strict hyperbolicity in Sub-section 2.5. Finally, in 2.6 we 
comment on the numerical schemes we use in our study. 

Sub-sections 2.1 through 2.4 are not intended to give a 
complete review of the theory of numerical schemes for 
hyperbolic systems of conservation laws; for this purpose, 
we refer the reader to the paper of Harten, Lax, and van 
Leer [24]. Here we restrict ourselves to those basic ideas 
which we need in order to explain our selection of computa- 
tional schemes and to have sufficient background for dis- 
cussing the numerical results. On the other hand, the scope 
of this section is broader than one would need for the 
Riemann problem alone; it is meant to establish a basis for 
the whole of our study, including [17, IS]. Thus the rela- 
tionship between this section and the rest of this paper is 
that a number of general issues are raised here, and are 
further addressed in the other sections within the relatively 
simple framework of the Riemann problem for (1.1). 
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2.1. Introductory Theory These entropy conditions carry over to strictly hyperbolic 

In this sub-section we review some of the basic facts about systems (see Lax [30] and Liu [32]). While convergence of 

hyperbolic systems of conservation laws. Such systems are the viscosity method for general strictly hyperbolic systems 

of the general form is still an open question, Lax’s and Liu’s conditions 
have been shown to be equivalent, for small amplitude 

w, + (f(w)L = 0, w(x, 0) = wO(x), (2.1) 
quasi-stationary step discontinuities, to the existence of 
viscous profiles, i.e., traveling wave solutions of (2.4) which 

where andf: iw” + R” and x, t E IR. (2.1) is called hyperbolic 
if the Jacobian Dfof the flux function is diagonalizable over 
[w; of particular importance is the case of strict hyper- 
bolicity, when all the eigenvalues of Df are distinct. 

It is known that smooth solutions of (2.1) typically break 
down after finite time. Therefore one considers weak 
solutions, i.e., functions w which satisfy (2.1) in the sense of 
distributions, 

m co 
s s (cp,(A t) 4x3 t) 

0 
em 

approximate these quasi-stationary discontinuities as E 10 
[37]. For initial data with small variation, the Riemann 
problem for a strictly hyperbolic system has a unique, 
self-similar, piecewise continuous solution satisfying the 
Lax-Liu entropy conditions [30, 321, consisting of 
constant states joined by shock and rarefaction waves. (For 
certain specific systems of conservation laws, analogous 
results have been proved for arbitrary initial data.) 

These ideas have been applied in the development of 
numerical schemes for (2.1). However, they do not 
necessarily carry over to non-strictly hyperbolic systems. 

+ (~x(x, t)S(w(x, t))) dx dt 2.2. Conservative and Upwind Differencing 

+ s 
Ocl c&x, 0) w’(x) dx = 0, (2.2) In order to describe numerical schemes for (2.1), dis- 
-cc cretize (a finite interval of) space into N small intervals of 

for all cp E Cm([W2, Iw) with compact support. Across any 
equal length Ax and time into discrete steps At. Assume we 
know w at space points i Ax, i E 1, . . . . N + 1, at time n At. We 

curve of discontinuity, (2.2) enforces the Rankine-Hugoniot write 
conditions: 

c(w+ -w-)=f(wf)-f(w-). (2.3) 

Here, C is the propagation speed of the discontinuity and 
w+ indicate the states just to the left and right of the 

&continuity. (These notions are due to Lax [30].) 
For strictly hyperbolic systems, Glimm [20] proved 
the existence of weak solutions for initial data of small 
total variation; a later extension is due to Liu [34]. 
Unfortunately, weak solutions of (2.1) are not uniquely 
determined by the initial data, and a selection principle is 
required to choose the physically relevant solution. For 
strictly hyperbolic systems, this selection problem may be 
considered as resolved in a satisfactory manner. In the case 
of scalar conservation laws (m = l), the vanishing viscosity 
approach has been carried out completely (see [29, 30,381). 
For arbitrary measurable initial data a unique solution 
may be obtained as the limit, when E L 0, of the viscous 
regularization 

WY = w(i Ax, n At), fY=f(w3, 

and ask how to advance wn to w”+ ‘. 
Equation (2.1) describes the conservation of a field 

variable w whose flux is f(w); we mimic this conservation 
principle by considering conservative numerical schemes. A 
conservative scheme in which WY+’ depends only on the 
three values WY-, , WY, WY+, may be written as a numerical 
flux difference 

)+I;+‘= At 
WY--/lxMw:‘,,, $7 - gcw:, WY-1 )). (2.5) 

Here, the time step At must be restricted by the Courantt 
Friedrichs-Lewy condition, which states a At/Ax 6 1, where 
a is the maximum of the (absolute value of the) eigenvalues 
of DJ The function g( ., ) is called the numerical flux, and 
must be consistent with the physical flux f( .) in the sense 

wt + (f(w)), = wx.r; (2.4) that 

this viscosity solution depends g,‘,,-continuously on the g(w, w) =f(w). 
data. When this solution is piecewise smooth (which is a 
generic property [40]), it may be characterized by an The simplest scheme one might think of trying would be 
explicit admissibility criterion which must be satisfied to approximate (2.1) by difference quotients in time and 
pointwise at discontinuities, namely the entropy condition space, with the spatial differentiation following the charac- 
of Lax [30] or that of Oleinik [38]. teristics of the system, i.e., upwind differencing. For (1.1 ), 
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where characteristic speeds are always non-negative, 
upwinding gives 

At 
W~+‘=W~--(j-~-f~~l), 

Ax (2.6) 

Note that upwind differencing is conservative, with a 
numerical flux 

The difference scheme (2.6) is of first-order accuracy 
(for smooth solutions). The behavior of this scheme near 
discontinuities will be addressed in Sub-section 2.4. 

2.3. Godunov and Random Choice Schemes 

Many modern schemes for solving hyperbolic systems 
(2.1) are based on explicitly resolving the local wave 
dynamics defined by (2.1), accounting for the nonlinearity 
of f and possible discontinuities in the solution. These 
schemes have their origins in the method introduced by 
Godunov [22]. To describe Godunov’s method, consider 
an approximation WY of the initial data w’(x), constant over 
each cell (i - 4) Ax < x < (i + $) Ax. At each cell edge, there 
is a (possible) discontinuity in W”, and one must solve a 
Riemann problem locally. Restrict the timestep At < Ax/2a, 
so that waves from adjacent Riemann problems do not 
interact. For 0 6 t 6 At consider the exact solution to (2.1), 
composed of the solutions to all of these local Riemann 
problems. Define w1 as the restriction of this solution to the 
line t = At. Now find a piecewise constant approximation W’ 
to w’, which will in turn serve as data for advancing the 
solution from t = At to t = 2At. Continue in this manner to 
find w”+’ and wn+ ‘, with wn+ ’ the restriction of an exact 
solution (defined on the strip n At 6 t 6 (n + 1) At by data 
M,” at t=n At) to t= (n+ 1) At, and iV+’ its piecewise 
constant approximation. 

Different numerical schemes may be obtained by altering 
the ansatz for solving the local Riemann problems and for 
obtaining W” from wn. Godunov obtained his approxima- 
tion by solving each Riemann problem exactly and then 
averaging u’~ + ’ over each cell ((i - i) Ax, (i + i) Ax). We 
remark that Godunov’s method may be put in conservative 
form [24]. 

In his existence proof [20], Glimm proposed an alter- 
native procedure for obtaining WY+‘. Instead of averaging 
over the computational cells, Glimm samples the Riemann 
solution at one point in each cell. Providing the sampling 
points are uniformly distributed within every interval, then 
with probability one all waves will be correctly described. 
Glimm’s original proposal was to randomly sample the 
interval; Liu [33] showed that equidistributed sampling is 
sufficient for the existence proof. This random choice 
construction was later developed into a method for 

numerical computations; for references, see Colella [ 81, 
who suggested using the equidistributed van der Corput 
sequence for the sampling strategy. 

To implement a Godunov or random choice scheme, one 
must specify a procedure for solving a Riemann problem at 
each cell edge, for each time step. Solving all these local 
Riemann problems in a numerical scheme is, in general, an 
expensive process. Moreover, only a limited amount of 
information from the exact solution is usually ever used 
(e.g., the average over subintervals in Godunov’s scheme). 
Therefore, it is often advantageous to replace the exact 
Riemann solver with an approximate solver which preserves 
salient features of the solution. [24] describes the construc- 
tion of approximation Riemann solvers. 

The Godunov and random choice schemes, as we have 
described them above, are first-order accurate in space and 
time. Higher order modifications of the Godunov scheme 
have been developed, beginning with the work of van Leer 
[ 3 11. These schemes attain high order accuracy in space by 
choosing the approximants WY as a piecewise high order 
polynomial (often linear) instead of piecewise constant. 
High accuracy in time is usually achieved by a predictor- 
corrector methodology. These high order schemes must 
include certain “slope limiting” or “flux limiting” procedures 
to prevent the introduction of spurious extrema caused by 
the discrete representation of the solution. See [31] for 
details. 

2.4. Artificial Viscosity 

As remarked in Sub-section 2.1, an admissibility 
condition must be imposed in order to select a unique and 
physically meaningful weak solution of (2.1). In numerical 
schemes for strictly hyperbolic systems, a small viscosity is 
sufficient for this purpose. This viscosity is not usually 
added to (2.1) explicitly, but rather is introduced through 
the design of the scheme. 

Consider, for example, the special case of upwinding for 
a linear, scalar conservation law w, + aw, = 0, with a > 0. It 
is easy to see that in this case (2.6) may be rewritten 

w;+L aAt 
w;--(w;+l-wyp,) 

2Ax 

+gw+, - 2wy + WY- ,). (2.7) 

The last term is a difference approximation to w,,. Thus, 
scheme (2.6) may be viewed as solving, with second-order 
accuracy, the parabolic equation (2.4) with a viscosity 
coefficient 

aAx/ a At\ 
“=2( ) 1-x. (2.8) 
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The high order Godunov schemes incorporate a selective 
amount of artificial viscosity. In particular, near a large 
gradient the “limiter” reduces the spatial interpolation to 
zeroth order (i.e., constant), and the whole scheme essen- 
tially reverts to upwind differencing. We emphasize that this 
extra dose of viscosity is included only near large jumps in 
the data, such as found at a shock; away from sharp transi- 
tions, the limiters are turned off and the artificial viscosity 
is reduced. Indeed, it is precisely this well regulated inclu- 
sion of viscosity which gives the Godunov methods their 
high degree of resolution. For strictly hyperbolic systems, 
the utility of employing artificial viscosity in numerical 
calculations follows from the theoretical success of the 
vanishing viscosity approach. 

By employing probabilistic sampling, the random choice 
method introduces no artificial viscosity. This allows for 
perfect shock resolution; that is, the width of the shock 
transition is zero. The question of admissibility is addressed 
in the analytic construction of the Riemann solver. 

2.5. Non-strictly Hyperbolic Systems 

When hyperbolicity is no longer strict, results are 
available only for special systems or classes of systems. In 
particular, for systems whose flux function is of the form 
f(w) = q(w) w, existence results have been obtained via 
Glimm’s construction by Liu and Wang [36] and Temple 
[44]. Such fluxes were introduced by Keylitz and Kranzer 
[28], and include (1.1). Other results concerning the 
Riemann problem for special cases of non-strictly hyper- 
bolic systems were derived by Isaacson [25], Shearer 
[42], Schaeffer, Shearer, Marchesin, and Paes-Leme [41], 
Isaacson, Marchesin, Plohr, and Temple [26], and 
Freistiihler [ 11, 121. 

A few attempts and suggestions have been made to apply 
some of the computational methods outlined above to 
non-strictly hyperbolic systems. For schemes which do not 
explicitly refer to the wave-curve geometry of the Riemann 
solution in phase space, such extensions are, in principle, 
direct. This has been done for MHD in [S]. For schemes 
which do refer to the wave-curve geometry, Bell, Colella, 
and Trangenstein [3] have suggested modifications of the 
high order Godunov methodology which account for the 
special character of this geometry near points in phase space 
where strict hyperbolicity is lost. 

Speaking generally, when studying non-strictly hyper- 
bolic systems numerically, the typical experience is to find 
that “the nature of the computationally resolved wave 

patterns depends sensitively on the choice of the numerical 
method” [21]. The lack of a general solution theory is no 
explanation for such inconsistency. Rather, the lack of 
theory and the computational sensitivity may have a com- 
mon source. It is our contention that, because the vanishing 
viscosity approach is not well-behaved in general, incor- 
poration of artificial viscosity in numerical schemes without 
careful reflection on the nature of the problem to be solved 
can lead to severe errors. One must make a clear distinction 
between solving the hyperbolic system (2.1) and the related 
parabolic regularization (2.4). 

2.6. Schemes Used in This Study 

In our study, we solved (1.1) using the random choice 
scheme, a simple upwind scheme, and two second-order 
Godunov-type schemes, that of Bell, Colella, and 
Trangenstein, [3] and that of Roe [39]. We also used a 
variant of the random choice method which integrates the 
viscous problem 

u,+(IulZ UL=EL, E > 0; (2.9) 

this is done by fractional steps, first solving U, + 
(I U12 U), =0 by random choice, then using Crank- 
Nicholson to solve U, = EU,,. (In fact, we used a Strang 
splitting, calling the random choice solver for time At/2, 
Crank-Nicholson for At, and finishing with another call to 
random choice for a half-step.) We view (2.9) as introducing 
a controlled amount of diffusion into the calculation and 
have compared the results obtained from this scheme for 
different values of E with the results produced by the other 
methods. 

The random choice method was coded using the 
“intuitive” centered wave construction introduced in Sec- 
tion 1 (see Section 4.1 for analytic results on this solution.) 
Following [S], we used the van der Corput sequence for 
the sampling strategy. Upwind differencing is completely 
defined by Eq. (2.6). The two second-order Godunov-type 
schemes are detailed in [3, 24, 391. 

3. NUMERICAL RESULTS 

Here we present the results from a series of numerical 
experiments, carried out for different initial data and with 
different schemes. In Section 4.2, we draw together these 
numerical findings by calling upon analytic results 
about (1.1). 

FIG. 1. Results from the Random Choice and Godunov schemes for various values of p and 6, at time T= 0.75. Shown are the plots of u(--) 
and v(---). We exhibit only the range 0 <X < 3 (neglecting the trivial piece -0.15 <X < 0). In Figure 1 .l, p = 0.25 and 6 takes the values 0.25~ 0.75~ 
1 .Orr, as indicated on the top label. In Figure 1.2, p = 0.75; Figure 1.3, p = 1 .O; Figure 1.4, p = 1 .l. 
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FIG. 2. A comparison of the Random Choice scheme, with various values of the viscosity parameter E, and the Godunov scheme. For these plots, 
p = 0.75 and 6 = 0.9~ In Figure 2.1, E = 0.0075; in Figure 2.2, E = 0.005. Figure 2.3 shows results using the Godunov scheme. Figure 2.4 shows results from 
the inviscid Random Choice scheme, i.e., E = 0.0. 

For our numerical experiments, we discretized the inter- and 6 = 0.0, 0.257~~ 0.7574 0.9n, 0.957r, rc. Using each of the 
val -0.15 < x < 3.0. The Riemann data was of the form schemes described in Section 2.6, we computed the solutions 

UO(x)= z2 
i 

-O.l5<x<O 
up to time t = 0.75, which, with our x-interval, allows 
sufficient travel distance for all waves to separate. Computa- 

r’ 0 <x < 3.0 tions were performed on a Sun SparcStation 1. To facilitate 

with comparison of results, we always used the same space step 

U,=(l,O), U, = (p cos 6, p sin 6) (3.1) Ax = 0.01, and the time step At = 0.9 Ax/max(3 1 U”I 2), i.e., 
90% of the maximal value allowed by the CFL-condition. 

and p and 6 chosen from the values p = 0.25, 0.75, 1.0, 1.1, We emphasize that specifics of the issues we illustrate below 

FIG. 3. The competition between dynamics and viscosity is illustrated in this sequence of plots, which shows the results of the Random Choice 
scheme with different values of viscosity and the Godunov scheme. In each plot, p = 0.75 and 6 takes the values 0.75a, 0.95x, 1 .On. In Figure 3.1, e = 0.0075; 
in Figure 3.2, E = 0.005. Figure 3.3 shows results using the Godunov scheme. Figure 3.4 shows results from the inviscid Random Choice scheme. 
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are changed when the grid is relined, but all of the issues 
have counterparts on the relined grids. (Remark: The reader 
should recall that the size of artificial viscosity introduced in 
certain numerical schemes, as in (2.8), depends on space and 
time steps.) 

We present a large selection of numerical results in order 
to address the following three topics: (a) a comparison 
between explicit resolution and implicit approximation of 
the wave pattern; (b) the strong dependence of solutions 
with special initial data on the size of artificial viscosity; 
(c) the subtle balance between the ideal dynamics and 
viscous effects for such data. 

The results obtained by the two high-order Godunov 
schemes were always very similar, both qualitatively and 
quantitatively. Also the results from the first-order upwind 
scheme differed only slightly from these second-order 
methods. Thus we restrict our graphic display here to 
output from the random choice scheme, the Bell-Colella- 
Trangenstein second-order Godunov scheme and the 
combination of random choice with Crank-Nicholson. 

To illustrate (a), the pictures in Fig. 1 show solutions 
obtained by random choice and the Godunov scheme, for 
the four values of p (Figs. 1.1-1.4) and 6 = 0.2571, 0.757c, 71. 

Aspect (b) is illustrated by the pictures in Fig. 2, which 
show solutions obtained by the various schemes. Figures 2.1 
and 2.2 show the results of solving (2.9) as described with 
different values of E. In Fig. 2.1, E = 0.0075 (i.e., E = i dx); in 
Fig. 2.2, E = 0.005 (i.e., 4 dx). Figure 2.3 presents the results 
using the Godunov scheme. Figure 2.4 shows results using 
the random choice scheme. Data are given by (3.1) with 
p = 0.75, 6 = 0.9n. 

Finally, topic (c) is made visible in the graphics of Fig. 3, 
which presents a sequence of data that approach the 
interesting case 6 = rc. Shown are the results using: 
(Fig. 3.1) (2.9) with E =0.0075; (Fig. 3.2) Eq. (2.9) with 
E = 0.005; (Fig. 3.3), second-order Godunov method; 
(Fig. 3.4), the random choice method. The data are given by 
6 = 0.757~, 0.9571, rr with constant p = 0.75. 

4. INTERPRETATION 

In this section, we will try to elucidate the origin and 
meaning of the results from the numerical experiments 
presented in Section 3. Specifically, we will collect some 
analytical results on ( 1.1) (in Sub-section 4.1), discuss 
details of the individual experiments (in Sub-section 4.2), 
and give more details on the relationship of (1.1) to physical 
models (in Sub-section 4.3). 

4.1. Some Analytical Results 

We begin by examining more closely the “intuitive” way 
of solving the Riemann problem for ( 1.1) that was intro- 
duced at the very beginning of this paper. To any Riemann 

data (1.2), this approach assigns a solution U(x, t) = 0(x/t) 
via: 

(U,, 0-c IU,12 
^ 

1 
u IU,l2<cJ<3 IU,12 

U(a)= (oy+2 U,/lU,l, 3 IU,I2<0<3 /U,12 
(4.1.1) 

h> a>3 IUr12, 

if IU,I 3 IU,l, 

CT< IU,12 
IU,12<o< lU,12+ IU,I IU,I + IUr12 
o>lU,12+ lU,I IU,I + lUr12, 

(4.1.2) 

with U, = (I Ur l/l U, I ) U, in both cases. Denoting by S( U”) 
the solution thus assigned to data U”, we have the following 
property, [ 141: 

LEMMA 1. (Dynamical stability.) S is continuous with 
respect to the dp:,, -topology. Discontinuities are stable 
against small perturbations. 

For the general Cauchy problem, we have: 

LEMMA 2. (i) Let U” be any initial data for (1.1) such 
that the total variation of r 0 U” and 0 0 U” is bounded. Then, 
for any pair (Ax, At) satisfying the Courant-Friedrichs- 
Lewy condition, 3 sup I U”I 2 At < Ax, using the solution 
operator S for the Riemann problem of (1.1) in Glimm’s 
scheme defines an approximate solution o= 0(x, t) for all 
x E [w, t > 0. If k(A~, At) is an appropriate sequence of such 
pairs converging to zero, the corresponding sequence of 
approximants k. contains a subsequence which converges to 
a weak solution of (1.1). (ii) The limit in (i) is the unique weak 
solution in a certain natural function space and depends 
Y:,,-continuously on the data. 

In [36], Liu and Wang have proved statements 
analogous to (i) for a class of rotationally invariant systems 
under certain assumptions; only slight modifications are 
required to extend their proof to (i). (ii) follows from [ 15). 

Next, we examine the solution operator for the Riemann 
problem of (1.3) given by [32,45]. To any data 

uo = 
{ 

Ul> x<o 

U r> x > 0, 
(4.2) 

this solution operator assigns a function u(x, t) = ii(x/t) as 
follows: 
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if UIE [0, l] u,, 

1 

u/9 u < 324: 
C(o) = (o/3)1/2 u,/Iurl, 3u; < u < 3uf (4.3.1) 

U F-3 a>3u;; 

if zf, E [ - $, 1) u,, 

C(a) = 
1 

u/, u < u; + u,u, + u; 
(4.3.2) 

Ll i-’ a>u:+u,u,+uf; 

ifu,E(--cO, -;)u,, 

1 

U/5 
3 2 

O<,U, 

C(a) = (a/3)“2 u,/Iu,I, az4; < (T < 3uf (4.3.3) 
u r> o>3uf. 

Denoting by s(u’) the solution u thus assigned to given data 
u’, we characterize this procedure as follows: 

LEMMA 3. (i) (Dynamical stability.) s is continuous with 
respect to the Zi,,- topology. Discontinuities are stable 
against small perturbations. (ii) (Vanishing viscosity.) For 
given data u”, s(u’) is the unique limit obtained by the 
vanishing viscosity method. 

These statements follow from Kruskov’s theory, [29]. By 
rotational invariance, (1.3) represents the restriction of ( 1.1) 
to any line (in phase space) through the origin. Thus s may 
be lifted in an obvious manner to yield a solution operator 
for the Riemann problem of (1.1) with co-linear data. The 
difficulty with the vanishing viscosity approach for (1.1) is 
now apparent; solutions obtained from s are different from 
those obtained from S for data such that 0 E (U,, U,). The 
following discrepancy has been proved in [ 141: 

LEMMA 4. (Vanishing viscosity.) If, for (1.1) with given 
data (1.2) the vanishing viscosity method converges to a 
piecewise continuous self-similar wave pattern, then this limit 
is S( U”) whenever 04 (U,, U,). Zf, however, 0 E (Ut, U,), 
then the solution of the viscous problem ((2.9) with (1.2)) 
converges to the solution corresponding to s. 

This shows that (1.1) and (2.9) are not uniformly close to 
each other. 

4.2. Details of the Experiments 

Due to the similarity properties of system (l.l), all 
families of solutions to the Riemann problem corresponding 
to different given values of U,#O are isomorphic to each 
other in the sense that a one-to-one correspondence 
between members of any two such families is established by 
an appropriately chosen scaling transformation. Thus, data 
(3.1) cover all cases with U, # 0. In picking interesting 
values of p we were guided by the fact that the structure of 

the solution S( U”) undergoes a change at p = 1; specifically, 
the fast wave in S( U”) is a shock for p < 1, but a rarefaction 
for p > 1. Similarly, at 6 = 7c the structure of the solution 
obtained by lifting s(u’) changes at p = 0.5; s(u”) changes 
from a single shock, for p < 0.5, to a composite wave, i.e., a 
shock with contact to an adjacent rarefaction wave, for 
p > 0.5. These exact solutions may be read off immediately 
from (4.1) and (4.3). 

The results plotted in Fig. 1 show that for small 6 there is 
a reasonable agreement between the solutions obtained 
from the random choice method and those computed by 
using the Godunov scheme (modulo the spreading of 
contact discontinuities by the latter). On the other hand, 
when 6 + rc, there is a marked difference between the two. 

We claim that this discrepancy is fully explained by 
the singular behavior of the vanishing viscosity approach 
observed in Lemma 4. The validity of this claim becomes 
apparent if we view the Godunov scheme as an approxima- 
tion to a viscous regularization of (1.1) rather than to (1.1) 
itself. To test this explanation, we examined the influence of 
artificial viscosity by solving (2.9). Hence the plots in Fig. 2. 
Note that, according to Lemma 4, the singular behavior 
occurs for data with OE (U,, U,) (or nearly so), corre- 
sponding to 6 z rr; this is why we picked the value 6 = 0.97~ 
for this series of pictures. From the pictures it is obvious that, 
for fixed data, reducing the amount of artificial viscosity 
introduced by the scheme results in closer agreement with 
the ideal solution obtained from S. 

Let us consider a family of data 

u,= (l,O), 

U, = (p cos 6, p sin 6) 

with p >O fixed and 6%:. (4.4) 

Assume that there exist reasonably behaved solutions U,,;, 
of the regularization (2.9) for data (4.4). For a fixed value of 
E > 0 one expects U,* to tend to U,,. for 6 + rr; as a conse- 
quence of (ii) of Lemma 3, U, L will not differ much from the 
composite wave solution obtained from s ifs is small. On the 
other hand, if 6 # 7~ is kept fixed, Lemma 4 suggests that UE,d 
converge, with E J 0, to the dynamically stable solution 
obtained from S. Thus, there must be a subtle competition 
between dissipation (E) and dynamics (6). This is what our 
third series of plots, in Fig. 3, is about. From top to bottom, 
6 tends to rc; proceeding from Fig. 3.1 to Fig. 3.4, the 
dissipation is decreased until it vanishes in Fig. 3.4. The 
pictures clearly illustrate the competition between dynamics 
and viscosity. 

We summarize our findings in the following 

Conclusion. The Riemann problem for the hyperbolic 
system ( 1.1) is well posed. It makes sense to use its dynami- 
cally stable solution, given by (4.1), in the random choice 
scheme; applying this scheme to Riemann data yields the 
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dynamically stable solution. Using other standard schemes 
for the Riemann problem of (1.1) shows that this solution is 
well approximated by the solution of the corresponding 
viscous problem (2.9) for any fixed small values E of the 
viscosity, as long as the data UI, U, are not too close 
(depending on E) to satisfying the condition 0 E (U,, U,). On 
one hand, as the data come to meet this condition more 
closely, the dynamically stable solution ceases to resemble 
the solution of the viscous problem. On the other hand, as 
E is decreased, the region (in (U,, U,)-space) of good agree- 
ment expands, ultimately (for E z 0) covering all data for 
which 0 +! (U,, U,). 

4.3. On the Relationship to Physical Models 

The system (1.1) considered in this paper is an example 
from the class of systems characterized by a rotationally 
equivariant flux, i.e., 

f(~)=@(IuI*)u. (4.6) 

Systems of this kind were considered by Keylitz and 
Kranzer in [28], who were interested in the Riemann 
problem for the equations governing planar motions of 
an ideal elastic string. These equations are of the form 
(see Antman [ 1 ] ) 

u, - v, = 0 
(4.7) 

v,-f(U),=0 

with f satisfying (4.6). Any system exhibiting the structure 
(4.7) is hyperbolic if the corresponding system 

U,+S(UL=O (4.8) 

is hyperbolic and the eigenvalues of Of are all positive. 
Moreover, there is an intimate relationship between the cen- 
tered solutions of (4.7) and (4.8). This is why Keyfitz and 
Kranzer studied the Riemann problem for (4.8) with (4.6) 
first, with @ satisfying certain assumptions. In doing so, 
they proved a number of interesting properties. Following 
these lines, Shearer [42] proved unique solvability of the 
original problem. Nonlinear plane waves in incompressible 
isotropic elastic bodies are also governed by equations of 
the form (4.7) with symmetry (4.6) [2]. 

The equations for nonlinear plane waves in compressible 
isotropic hyperelastic media have the form (4.7) [9] and 
so do the equations governing nonlinear plane magneto- 
hydrodynamic waves [ 111. In these two cases, the function 
f has a rotational equivariance which is not precisely of the 
form (4.6). 

In all these cases, the behavior of certain transverse 
components of the state variable is adequately modeled 
(in a certain sense) by (4.8) with a flux (4.6). Obviously, the 

leading (nonlinear) part in a Taylor expansion of any such 
flux at U = 0 is, up to a multiplicative constant, 1 UI * U. This 
is what makes (1.1) a significant model [4, 121. (Remark: 
This small amplitude expansion argument does not apply to 
the elastic string problem, the setting which first gave rise to 
a study of the Riemann problem for a system with rota- 
tionally equivariant flux. In this problem, U represents the 
derivative of particle position along the string; hence U 
cannot vanish, since U = 0 would correspond to an infinite 
shrinking of the string. One must restrict phase space away 
from this unphysical value. More generally, the elastic string 
problem cannot be hyperbolic for ) UI < 1; see Carasso, 
Rascle, and Serre [6].) With the exception of the elastic 
string problem, small values of IUI do make sense for all 
systems mentioned above. 

In particular, small values of I UI arise in magneto- 
hydrodynamics. With respect to this field of application, 
the work of Brio and Wu [S] and Wu [46] has been 
pioneering. They have investigated the so-called inter- 
mediate shocks. Brio and Wu contend that these shocks are 
physical and support this claim by numerical computations. 
In a sense our work may be considered as providing further 
evidence for this claim since the shocks appearing in 
the composite solution to the restricted problem (1.3) 
correspond to (certain) intermediate MHD shocks. On the 
other hand, our experiments also restrict this claim 
considerably. Let us explain this statement. As viscosity 
decreases (“viscosity” corresponds to electrical resistivity in 
this setting), ever smaller perturbations of the data split 
the intermediate shock into the dynamically stable two- 
dimensional wave pattern of a contact discontinuity plus 
another wave. In the inviscid limit, intermediate shocks are 
completely unstable against generic perturbations. 

The model character of system (1.1) allows us to restate 
the conclusion drawn in the preceding sub-section as a rule 
for the construction of good numerical schemes for generic 
rotationally degenerate systems of physical conservation 
laws, valid at least in the region corresponding to small 
values of U: As long as discontinuities of a certain type 
(satisfying an analogue of the above condition 0 E (U,, U,)) 
do not form, the presence or absence of a small viscosity 
plays no important role in determining the physical solu- 
tion. When such discontinuities do occur, one must make a 
clear distinction between the ideal and the viscous problem, 
and take care that the viscosity introduced by the computa- 
tional method correctly models the desired (zero or 
non-zero) physical viscosity. 
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